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Predicting time-dependent motion in the double-diffusive convection system
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The relationship between the control parameters for the double-diffusive convection system and
those for a one-dimensional map is established with the technique of symbolic dynamics. Then the
parameter value for the desired time-dependent motion in the double-diffusive convection system

can be predicted.
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I. INTRODUCTION

Convection has matured into a subject with a large va-
riety of applications. Many situations exist in oceanog-
raphy, astrophysics, and chemical engineering, etc. Con-
sider a fluid layer containing a bottom-heavy distribution
of a solute, such as salt as in oceanography, and heated
from below. A warmer fluid parcel may raise because of
less density, then it comes into a cooler, less salty envi-
ronment. Because the rate of molecular diffusion of heat
is larger than that of salt, the thermal field tends to equi-
librate with its surrounding more rapidly than does the
salt field. This parcel is then heavier and sinks. A convec-
tion may happen. Since there is a phase lag between the
thermal diffusion and the solute diffusion, like a spring
with a phase difference between the stabilizing force and
the destabilizing force, the small amplitude of the con-
vection may grow and becomes more nonlinear. Under
some conditions, the convection will exhibit periodic or
chaotic motion.

Double-diffusive convection can be realized in the lab-
oratory with cold fresh water lying above hot salty water,
or with a dissolved salt-sugar mixture, or with binary flu-
ids (water-ethanol or 2He-3He mixtures) which are even
more convenient for experiments [2]. Similar behavior
arises in a rotating system or in the presence of a mag-
netic field.

Idealized double-diffusive convection provides the sim-
plest model problem for these systems naturally or ex-
perimentally and has received considerable attention.
Most of the theoretical work concentrated on the two-
dimensional case. In the Boussinesq approximation with
the imposed symmetric lateral boundary conditions, the
model possesses discrete spatial symmetry. The solutions
of this model may retain or not retain this symmetry,
which is called the symmetric solutions and the asymmet-
ric solutions. The asymmetric periodic solutions undergo
a cascade of period-doubling bifurcations into chaos. The
chaotic region is interspersed with windows containing
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more complicated periodic orbits, both symmetric and
asymmetric. For the symmetric periodic solutions, the
period-doubling bifurcations must be preceded by a bi-
furcation to asymmetric [3-5]. Their behavior reveals the
similarity with that of one-dimensional (1D) mappings
[6]. Despite those observations, there has never been a
systematic investigation of the bifurcation behavior and
the chaotic dynamics on a parameter axis.

So far symbolic dynamics provides the most robust
technique to understand systematics of these periodic
windows interspersed in chaotic region [7]. In one-
dimensional mappings it has been well established that
the periodic windows embedded in chaotic region can be
ordered and generated in a systematic way according to
symbolic dynamics of two or three letters [7]. However,
for systems described by differential equations this kind
of global property is still less understood. A few years
ago, Hao et al. had presented approaches towards the un-
derstanding of this global property on the Lorenz equa-
tions (8] and forced Brusselator [9]. They found many
of the periodic windows with short length can fit into
the universal form of 1D mappings. The parameters of
the systems they discussed, however, are far from the
real physical problems. Swinney and co-workers had also
applied the symbolic dynamics to the experimental data
from the Belousov-Zhabotinskii reaction and found that
the periodic orbits interspersed in the chaotic region can
be modeled by 1D maps [10]. In this paper, we will apply
the symbolic dynamics to the double-diffusive convection
system. We first give a quantitative comparison between
the systematics of stable periodic windows interspersed
in chaotic region of this system with that of 1D map-
pings with the same antisymmetry. By determining the
kneading sequences (which will be defined in Sec. III)
of the double-diffusive convection system numerically,
the relationship between the control parameters for the
double-diffusive convection system and those for a 1D
map is then established and the parameter value for the
desired time-dependent motion (not restricted to peri-
odic motion) in the double-diffusive convection system
can be predicted.

The paper is organized as follows. In Sec. II we re-
view the basic ideas of symbolic dynamics for 1D map-
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pings with antisymmetry. Then in Sec. III we apply the
symbolic dynamics to the double-diffusive convection sys-
tem to predict the parameter value for the desired time-
dependent motion. In Sec. IV, we assess the significance
and limitations of our study and suggest direction for
future research.

II. SYMBOLIC DYNAMICS
FOR A 1D ANTISYMMETRIC CUBIC MAP

In this section we will review the basic ideas of the
symbolic dynamics for the following 1D antisymmetric
cubic map

Tny1 = F(z,) = Az3 + (1 - A)z,.. (1)

This map maps the interval [—1,1] into itself when A
varies in [1,4]. The shape is shown in Fig. 1 where
C and C denote the maximal and minimal points, re-
spectively, which divide the interval [—1,1] into three
monotonic segments marked by L, M, and R. Nearly
all trajectories are then unambiguously encoded by infi-
nite strings S(z) = (308182 ), s; may be one of the five
letters L,C, M, C, and R.

For these symbolic strings, we can define ordering rules
referring to the natural order in the 1D interval [-1, 1].
It is clear that

R>C>M>C > L.

Let us consider two symbolic strings S(z;) and S(z2)
from initial points z,; and z, and assume S(z;,) =
P*py--- and S(z2) = P*uy---, respectively, where P*

Tn+l

-1 1
-1 0 1
Zn

_ FIG. 1. The shape of the 1D map Zn+: = Azd +(1-A)z,,.
C and C denote two critical points which divide the interval

[-1,1] into three monotonic segments marked by L, M, and
R.

is the common part and pu; # po are the first different
letters which may be L, C, M, C, or R. Since only a
letter M corresponds to a decreasing monotonic branch
(which will reverse the order), we obtain the order for

S(z1) and S(z2) as follows:

S(.’l)l) > S(.’Ez)

} for p1 > pe
S(z1) < S(z2)

and

even
: !
P* contains an number of M's .

odd

The attractor of the map (1) will always lie in the in-
terval [F(C), F(C)], e.g., = € [F(C), F(C)]. Denoted by
K, and K, the kneading sequences which are the sym-
bolic sequences from C and C, we get the admissibility
conditions for a word S(z) corresponding to a real orbit
of the map (1), which is: S(z) is allowed if and only if it
satisfies

Ky >0™(S(z)) > K,, m=0,1,2, ..., (2)
where o is a shift operator. It should be emphasized that
the kneading sequences Ky and K, from the maximal and
minimal points play a crucial role in the determination
of the topological properties of the 1D map (1) at given
parameter A. From the antisymmetric property of the
map (1) K, = K,. K, is the conjugate of K, obtained
by interchanging L’s and R’s but leaving M’s unchanged.

It should be mentioned that the symbolic dynamics
constructed in this way is independent of a particular
mapping. It is universal for all the mappings with two
critical points and the antisymmetric property [7,12].
The kneading sequences determine the topology of these
systems completely.

Now we consider the property of the 1D map on a
parameter axis. Generally, the kneading sequences K,
and K, will change as A alters. For the map (1), it is
found that K, increases monotonically as A increases.
Consequently, from the grammar (2), once an orbit is
created, it will always exist as parameter A increases.

When the kneading sequences are periodic strings, the
map (1) exhibits stable periodic orbits [dF(z)/dz = 0
at C], which are called superstable periodic orbits. Con-
sequently, the kneading sequences are called the super-
stable words. Owing to the antisymmetry, there are two
kinds of superstable words. A symmetric superstable pe-
riodic word will be of the form

67(01(72 - 0,C01052 "'Eﬁnéj)oo = Cj(})cjjicj)co’

where o0; is L, M, or R and &; is the conjugate of o;.
Similarly, an asymmetric superstable word looks like

C(0102---0,C)® = C(PC)>™.

We omit the cycling hereafter as understood and simply
call these superstable periodic words PCPC and PC.
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III. PREDICTING TIME-DEPENDENT
CONVECTION IN THE DOUBLE-
DIFFUSIVE CONVECTION SYSTEM

The model of Veronis [11] for the double-diffusive con-
vection is based on permeable, free-slip horizontal bound-
ary conditions. Assuming that the standing waves were
the only relevent oscillating structure, he introduced the
minimal truncated five-mode model as follows [11]

a=o0(—a+7rrb—rsd),
b=—b+a(l-c),

¢ = w(—c+ ab), (3)
d=—7d +a(l —e),

é = w(—T7e + ad),

where dots indicate differentiation with respect t. a, b, d
measure the amplitude of first-order perturbations to the
stream function, temperature, and solute concentration,
respectively, while ¢ and e are measures of the second-
order thermal and solutal perturbations. The parameters
rr and s are normalized thermal and solutal Rayleigh
numbers, o is the Prandtl number, 7 (0 < 7 < 1) is the
ratio of the solutal to the thermal diffusivity, and @ (0
< w < 4) is a geometrical factor, related to the width of
a convection cell.

This five-mode system reproduces the features of the
full double-diffusive convection system qualitatively and
even quantitatively when the convection (or a, b, ¢, d, ¢€)
is sufficiently small [11].

The system (3) is invariant under the transformation

a— —a, b —-b, coec,d— —d, e e,

in which the variable a shares the same discrete symme-
try as = in the map (1). In this section we will study the
universal behavior of this five-mode equations with the
symbolic dynamics for the antisymmetric map (1). We
use a fourth-order Runge-Kutta scheme with appropri-
ately chosen time steps. The parameter values are set at
o=10,7 =0.4,w =8/3,rs = 6.

Equations (3) may have five fixed points. When the
trivial solution with a = b = ¢ = d = e = 0 becomes
unstable at 1 =1+ (14+0+7)Z + EZ:B &~ 7.1255, a
stable symmetric periodic orbit arises. After a symmetry-
breaking bifurcation at r¢ = 7.782, and a series of period-
doubling bifurcations, the system becomes chaotic. It is
found that all the interesting trajectories intersect the
plane ¢ = 0.17 from r7= 7.4 upwards. We call this plane
¥ and reduce Egs. (3) to the map (called F') in this
Poincaré section ¥.

The symbolic system we use is based on the first re-
turn map in Figs. 2(a), 2(b) for rr = 7.797 and rp =
7.796 247. Figures 2(a), 2(b) are obtained by plotting
the successive a,; versus a, of the map F. These re-
turn maps both reveal an outline of the underlying 1D
mapping, see, e.g., Fig. 1 [the deviations from a 1D map
in Fig. 2(a) will be discussed later]. It is remarkable that
Fig. 2(b) looks very similar to what one would get for
an asymmetric period 10 orbit from Fig. 1. We obtained
similar plottings for other periodic windows. This obser-
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vation is crucial for all the subsequent discussions and
suggests a reasonable way to name the periodic windows
in the double-diffusive convection model by words follow-
ing the same rules of that for map (1). This fact implies
that the dynamics underlying the overall periodic struc-
ture may be understood in the light of 1D mappings. As
that of the 1D mapping (1), we identify (7] the largest
numerical output z; as the left critical point C, then all
other z;’s acquire a unique assignment of letters L, M.
R, or C. We show this process in Table I for the period
10 orbits at rr = 7.796 247.

We present our results in Table II in which all the
periodic windows discovered are listed in increasing rr

Uy

(ni)

<

-0.35
-0.3

o

. ay,

FIG. 2. The first return map of the double-diffusive con-

vection system (1) in X. (a) rr= 7.797 (chaotic orbit); (b) r+
= 7.796 247 (asymmetric period 10 orbit).
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TABLE I. Assignment of letters to a period 10 orbit at rr = 7.796 247.

-0.1710  0.2963  -0.1252  0.2564
o} R M R L

-0.1985

0.2788 -0.1516 0.2908 -0.1349 0.2703
R M R M R

order along with their periods, words, and locations on
the parameter axis. Here the period is defined as the
period of the map F' which equals the number of points
in ¥. We also list the value of A for each word in the
1D mapping (1). These results clearly show that all
of the 10 periodic windows can fit into the 1D cubic
scheme. The most remarkable observation from Table
IT is the order of all the words being exactly the same as
that of their 1D counterpart along the increasing A di-
rection. Let us take P1 = RMRLRMRMRMRMRC
at rpy = 7.796078 and P2 = RMRLRMRMRC at
rr2 = 7.796 247 as examples. According to the 1D map
(1), Apy = 3.317412 and Ap, = 3.321906. Ap, < Ap,
corresponds to P; < P, and r1; < rr;. We emphasize
that the parameter 7 in the double-diffusive convection
model is in a sense the same as the parameter A in the
cubic map (1). Therefore, increasing rr is the same as
increasing A. The perfect ordering reflects the fact that
double-diffusive convection system shares the same topo-
logical universal properties with the 1D cubic map (1).
The similarity between the topology of the double-
diffusive convection and the 1D antisymmetric cubic map
(1) is not restricted to the periodic oscillations. For the
chaotic convection we get the same observations. For the
first return map of the Eqgs. (3), as that in the 1D map
(1), the kneading sequences K, can be calculated nu-
merically from the maximal a value for a given rr. The
calculated K, corresponds to an A value in the 1D map
(1). Then the relationship between the parameter rr in
the double-diffusive convection system and the parame-
ter A in the 1D map (1) is established, which is shown
in Fig. 3. The platforms interspersed in this r7-A rela-
tionship represent the periodic windows. From this re-
lationship, the parameter r7 for desired time-dependent
convection can be predicted. For example, if one wants

the double-diffusive convection system to exhibit period-
10 oscillations with a word RMRLRMRMRC, which
corresponds to A = 3.321906 in the 1D map (1), we
get 77 =~ 7.79624 from Fig. 3. After a more careful
searching we find the period-10 oscillations with a word
RMRLRMRMRC at rp = 7.796 247-7.796 250. With a
more powerful computer, we can compute the rp-A re-
lation to very high accuracy. Then the r value for the
period-10 oscillations with a word RMRLRMRMRC in
the double-diffusive convection system can be “read” di-
rectly from Fig. 3, and so this also applies for other
desired periodic convection whenever it exists.

Now we consider the deviations from a 1D map in the
first return map shown in Fig. 2(a) (in some part the map
becomes double valued). Due to the complexity of the
five-mode Egs. (3), we cannot expect the first return map
in Fig. 2(a) to be completely one dimensional. In order to
reveal the complex topological property of the first return
map in Fig. 2(a), we have to study it with symbolic
dynamics for 2D mappings with antisymmetry [14]. In
the present paper, we will not detail them anymore and
only present the results. It is remarkable to find that the
results are just those obtained above with the symbolic
dynamics for 1D mappings when we only consider the
periodic orbits with period <20. Thus the technique used
above is a robust and practical one and we do not need
to bother about the double valuedness in the first return
maps.

IV. CONCLUSION AND DISCUSSIONS

We have applied symbolic dynamics to the real physi-
cal model on a parameter axis. This allows us to establish
the relationship between the control parameters for the

TABLE II. Periodic windows for the model (3) with ¢ = 10, 7 = 0.4, @ = 8/3, and rs = 6. “*”
denotes the orbit after the symmetry-breaking bifurcation. The symmetric words are included in

the parentheses.

No. Period Word A rT range
1 2*  RC (CC) 3.121320 7.1255-7.7921
4 RMRC 3.262879 7.7922-7.7948
8 RMRLRMRC 3.293843 7.7949-7.79545
16 RMRLRMRMRMRLRMRC 3.300475 7.79546-7.79548
2 24 RMRLRMRMRMRLRMRLRMRLRMRC 3.303736 7.795544-7.795545
3 20 RMRLRMRMRMRLRMRLRMRC 3.306480 7.795650-7.795659
4 12 RMRLRMRMRMRC 3.309068 7.795740-7.795759
5 20 RMRLRMRMRMRMRMRLRMRC 3.311313 7.795840-7.795849
6 16 RMRLRMRMRMRMRMRC 3.313043 7.795901
7 14 RMRLRMRMRMRMRC 3.317412 7.796078-7.796081
8 10 RMRLRMRMRC 3.321906 7.796247-7.796250
9 14* RMRLRLMLMLRLRC (RMRLRLCLMLRLRC) 3.373058 7.797381
10 10* RMRLMLMLRC (RMRLCLMLRC) 3.394393 7.797924-7.797994




2794
3.435 T
////
A )
/’?
///
3.365 | ,// h
yd
e
1
/
/'/
—
[
3.295 L
7.795 7.797 )¢
I

FIG. 3. The relationship between rp for the dou-

ble-diffusive convection system and A for the 1D map (1).

physical model with those in the underlying 1D mapping.
Since the behavior for 1D maps has been well understood,
the control parameter for the desired convection can be
well predicted. These results are helpful to control the
motion of the double-diffusive convection fluid systems
(by changing the relevant conditions) both naturally or
experimentally. To our knowledge, this is the first exam-
ple to establish the one-to-one relationship between the
control parameters for the physical model with those in
a well-known 1D mapping in a wide range of parameters
by calculating the kneading sequences of the first return
maps of the physical system numerically and then the
parameter for the desired convection (not only restricted
to the periodic motion) can be well predicted.

The technique and results in the present paper also
help to make the technique of “controlling chaotic dy-
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namical system” [13] be more available. Recently, much
attention has been paid on stabilizing a desired un-
stable orbit. However, the desired unstable orbit may
not exist in some parameters. For example, K, <
RMRLRMRMRC for Ry < 3.321906. The peri-
odic motion denoted by RMRLRMRMRLC is not al-
lowed from the grammar (2) for Ry < 3.321906 in the
double-diffusive convection system. With our method
we can predict the parameter range for the desired time-
periodic motion embedded in the chaotic orbit and then
it can be stabilized. For the periodic motion denoted by
RMRLRMRMRLC, it can only be found and stabilized
for Ry > 3.321906.

It should be noted that the model considered in the
present work is an idealized one with free-slip-permeable
boundary conditions which are not the physically rele-
vant ones. However, this model does provide the simplest
model problem for these systems naturally or experimen-
tally which is easy to discuss in detail. We are encouraged
that the technique presented in this paper can also apply
to predicting the time-dependence motion of real physi-
cal fluid systems with experimental boundary conditions.
It also should be noted that the traveling waves [15] usu-
ally coexist with the standing waves in fluid systems and
we only discuss the standing waves in the present paper.
The work on the application of the symbolic dynamics to
predicting time-dependence motion of real physical fluid
systems both for standing waves and traveling waves is
still to be undertaken.
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